Hierarchy of Information.png

Outsource-idea-bob-bly.png

Background[edit | edit source]

  • Open content goes beyond textbooks and digital books but also includes lecture notes, assignments, exams, videos, podcasts, and so on.

Content Exchange[edit | edit source]

The lowest level of collaborative knowledge production is simple content exchange: colleges and universities post their educational materials online, putting into the public domain what would have traditionally been considered a proprietary asset and part of the institution’s competitive advantage in the global market for students.

MIT pioneered the concept, and today more than 200 institutions of higher learning have followed suit as part of MIT's OpenCourseWare initiative. OpenCourseWare solves the problem of isolation and provides a wealth of materials that others can use and even build on, regardless of their institutional affiliation.


Professors and students will need better tools for gauging the quality and suitability of various assets, and students will want some evidence of effort to carry forward. Using capabilities like smart contracts, blockchains provide a means of tracking and rewarding each party’s contributions. Users can do more than “like,” “upvote,” or share a piece of content; they can send its creator some tokens of value that might be used, say, to support research assistance or grant writing.

Members of the worldwide academic community will have incentive to contribute their intellectual property, know-how, and insights not just to improve higher education but also to enhance their own reputations and even to receive material or financial benefit. Newcomers will be able to see not only the most used content relevant to their studies but also the most valued contributors. For-profit academic journal and textbook publishers can participate in, rather than intermediate, value creation.

Content co-innovation[edit | edit source]

Collaborative knowledge creation goes beyond discussing and sharing ideas to the actual co-creation of content.

Just as Wikipedia’s distributed editors collaborate to create, update, and expand the online encyclopedia’s entries, so too could professors co-innovate new teaching material, publish this newly synthesized content, and share in the recognition and rewards.

A case in point is Wikiversity, a project of the Wikimedia Foundation. Rather than offer a set menu of courses and materials, Wikiversity participants set out what they want to learn, and the Wikiversity community collaborates, in multiple languages, to develop learning activities and projects to accommodate those goals. Imagine what a platform like Wikiversity could do with a token system to reward collaborative behavior! That’s what the blockchain supports. It enables the community to identify valuable projects, assemble teams of collaborators, and fund each phase of development, rewarding collaborators according to their contributions.

In this scenario, psychology professors would work together to design the “perfect course” that pools the collective knowledge of the world’s leading thinkers in the field. Of course, participants would not agree totally on course contents, since there are various perspectives, schools of thought, and teaching techniques. But as in Wikipedia, the professors could work globally to create core, generally agreed-upon modules, and then subnetworks of like-minded teachers could develop ancillary elements. For the ultimate course, the teachers would need more than course materials — they would need course software allowing students to interact with the content, supporting small-group discussions, enabling testing and scoring, and issuing badges for completion.

If thousands of people can develop Linux, the most sophisticated computer operating system in the world, they can certainly develop the tools for a psychology course. Indeed, many well-known open-source software projects are already under way in the academic community. One of the most popular is Sakai. Built by educators for educators, Sakai facilitates collaboration in and across courses, research, projects, administrative processes, and multidisciplinary and multi-institution efforts. Creation of the software itself is a product of content co-innovation. In turn, the product helps users co-innovate content that educators can teach to students. We need more projects like this.

Used properly, blockchain platforms could support such collaboration directly with students too. Rather than simply receiving the professor’s knowledge, the students could co-create knowledge with light supervision — one of the most effective methods of learning — and get credit for their co-creation.

Community content is available under CC-BY-SA unless otherwise noted.